检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG LianZhu WANG Yan LU FuLiang
机构地区:[1]School of Mathematical Sciences,Xiamen University [2]School of Sciences,Linyi University
出 处:《Science China Mathematics》2013年第9期1957-1964,共8页中国科学:数学(英文版)
基 金:National Natural Science Foundation of China (Grant Nos. 10831001 and 11171279);the Scientific Research Foundation of Zhangzhou Normal University (Grant No. SX1002)
摘 要:An orientation of a graph G with even number of vertices is Pfaffian if every even cycle C such that G-V(C) has a perfect matching has an odd number of edges directed in either direction of the cycle. The significance of Pfaffian orientations stems from the fact that if a graph G has one, then the number of perfect matchings of G can be computed in polynomial time. There is a classical result of Kasteleyn that every planar graph has a Pfaffian orientation. Little proved an elegant characterization of bipartite graphs that admit a Pfaffian orientation. Robertson, Seymour and Thomas (1999) gave a polynomial-time recognition algorithm to test whether a bipartite graph is Pfaffian by a structural description of bipartite graphs. In this paper, we consider the Pfaffian property of graphs embedding on the orientable surface with genus one (i.e., the torus). Some sufficient conditions for Pfaffian graphs on the torus are obtained. Furthermore, we show that all quadrilateral tilings on the torus are Pfaffian if and only if they are not bipartite graphs.An orientation of a graph G with even number of vertices is Pfaffian if every even cycle C such that G-V(C) has a perfect matching has an odd number of edges directed in either direction of the cycle. The significance of Pfaffian orientations stems from the fact that if a graph G has one, then the number of perfect matchings of G can be computed in polynomial time. There is a classical result of Kasteleyn that every planar graph has a Pfaffian orientation. Little proved an elegant characterization of bipartite graphs that admit a Pfaffian orientation. Robertson, Seymour and Thomas (1999) gave a polynomial-time recognition algorithm to test whether a bipartite graph is Pfaffian by a structural description of bipartite graphs. In this paper, we consider the Pfaffian property of graphs embedding on the orientable surface with genus one (i.e., the torus). Some sufficient conditions for Pfaffian graphs on the torus are obtained. Furthermore, we show that all quadrilateral tilings on the torus are Pfaffian if and only if they are not bipartite graphs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229