检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学光电技术及系统教育部重点实验室,重庆400044
出 处:《模式识别与人工智能》2013年第7期688-694,共7页Pattern Recognition and Artificial Intelligence
摘 要:针对人工蜂群算法中食物源更新和观察蜂选择食物源机制存在的缺点,提出一种具有跟踪搜索和免疫选择的人工蜂群算法.在原搜索方法基础上,引入跟踪全局最优解和随机选择解的搜索方法,选择搜索到的最优解作为候选解,以加快种群的收敛速度,提高算法的收敛性;在观察蜂选择食物源时,引入免疫系统的抗体浓度调节机制,以维持种群的多样性,提高算法的全局搜索能力.对6个经典测试函数的仿真计算结果表明,与ABC、GABC、RABC和TABC算法相比,改进算法在寻优精度、收敛性能方面具有较明显的优势.To overcome the disadvantages of food source updating and the mechanism for onlooker bees to select food source in the Artificial Bee Colony (ABC) algorithm, an ABC algorithm based on tracking search and immune selection is proposed. The search methods for tracking the global optimal solution and randomly selecting solution are introduced on the basis of the original solution searching method. The searched optimal solution is selected as the candidate in order to accelerate the convergence of the population and improve the convergence of the algorithm. For the procedure of the onlooker bees selecting the food source, the regulation mechanism of antibody density in the immune system is introduced to keep the diversity of the population and enhance the global search ability of the traditional algorithm. The simulation results for 6 classical benchmark functions show that the improved algorithm has obvious advantages in the optimization accuracy and convergence rate compared with the original ABC, GABC, RABC and TABC.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49