机构地区:[1]School of Materials&Metallurgy,Northeastern University
出 处:《Journal of Rare Earths》2013年第7期722-726,共5页稀土学报(英文版)
基 金:Project supported by National Natural Science Foundation of China(50974042,51104040,51274060);the National Program on Key Basic Research Project of China(973 Program,2012CBA01205);the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2012BAE01B00);the Scientific Research Special Foundation of Doctor Subject of Chinese Universities(20100042110008)
摘 要:Emulsification troubled normal extraction process of rare earths due to the existence of non-rare earth impurities, especially Si, Al and Fe. Against this background, the effect of emulsification caused by Si, Al and Fe on the La extraction with saponification P507 (2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester) in chloride medium was systematically investigated. A series of experiments were carried out to study the relationship of the extraction capacity of La and the concentration of impurities. ZPM-203 polarizing microscope was applied to investigate the morphology of emulsification, and the cation exchange extraction mechanism of Fe and Al as well as La was clarified by IR spectra. The results showed that a low concentration of Si in organic phase would aggravate the emulsification with Al, and the formation of ME (micro emulsion) and club-shaped polymer would result in emulsification in the extraction of mixtures of Si and Al, single Fe, respectively. Furthermore, the accumulation of impurity such as Si, Al and Fe in the organic phase would severely reduce the extraction capacity of La simultaneously.Emulsification troubled normal extraction process of rare earths due to the existence of non-rare earth impurities, especially Si, Al and Fe. Against this background, the effect of emulsification caused by Si, Al and Fe on the La extraction with saponification P507 (2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester) in chloride medium was systematically investigated. A series of experiments were carried out to study the relationship of the extraction capacity of La and the concentration of impurities. ZPM-203 polarizing microscope was applied to investigate the morphology of emulsification, and the cation exchange extraction mechanism of Fe and Al as well as La was clarified by IR spectra. The results showed that a low concentration of Si in organic phase would aggravate the emulsification with Al, and the formation of ME (micro emulsion) and club-shaped polymer would result in emulsification in the extraction of mixtures of Si and Al, single Fe, respectively. Furthermore, the accumulation of impurity such as Si, Al and Fe in the organic phase would severely reduce the extraction capacity of La simultaneously.
关 键 词:saponification P507 EMULSIFICATION EXTRACTION rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...