检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Huazhong Agricultural University
出 处:《Acta Mathematica Scientia》2013年第4期943-949,共7页数学物理学报(B辑英文版)
基 金:supported by NSFC(11001093,10901066)
摘 要:A famous theorem of Szemer'edi asserts that any subset of integers with posi- tive upper density contains arbitrarily arithmetic progressions. Let Fq be a finite field with q elements and Fq((X^-1)) be the power field of formal series with coefficients lying in Fq. In this paper, we concern with the analogous Szemeredi problem for continued fractions of Laurent series: we will show that the set of points x ∈ Fq((X-1)) of whose sequence of degrees of partial quotients is strictly increasing and contain arbitrarily long arithmetic progressions is of Hausdorff dimension 1/2.A famous theorem of Szemer'edi asserts that any subset of integers with posi- tive upper density contains arbitrarily arithmetic progressions. Let Fq be a finite field with q elements and Fq((X^-1)) be the power field of formal series with coefficients lying in Fq. In this paper, we concern with the analogous Szemeredi problem for continued fractions of Laurent series: we will show that the set of points x ∈ Fq((X-1)) of whose sequence of degrees of partial quotients is strictly increasing and contain arbitrarily long arithmetic progressions is of Hausdorff dimension 1/2.
关 键 词:Szemeredi theorem continued fractions Laurent series Hausdorff dimension
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.132.215.146