检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院沈阳自动化研究所,沈阳110016 [2]中国科学院大学,北京100049
出 处:《计算机应用》2013年第8期2362-2365,2386,共5页journal of Computer Applications
基 金:国家科技重大专项(2011ZX02601-006)
摘 要:针对面向订单装配(ATO)生产环境,如何根据订单信息、生产系统特性快速地估算出准确、可靠的交货期问题,在分析不确定性要素对交货期影响机制的基础上,构建了订单交货期预测模型。模型参数包括三个部分:订单上线时间、装配周期和异常拖期。订单上线时间基于零部件、生产能力的可用性,订单装配周期和异常拖期采用基于实际生产历史数据的支持向量回归(SVR)方法进行预测。案例研究表明该模型预测结果与实际交货期接近,可以用于指导订单交货期协商。For the issue of how to quickly estimate the accurate, reliable due date according to the order information and the features of the production system in Assembly To Order ( ATO), a due date prediction model was constructed based on the influential mechanism analysis of the uncertainty factors. The model parameters included three parts: order release time, assembly cycle time and abnormal tardiness. Order release time was based on the availability of materials and production capacity. The assembly cycle time and abnormal tardiness were predicted by using Support Vector Regression (SVR) method based on actual production history data. The case study shows that the predicted results of the model are close to actual due date and it can be used to guide the order's delivery time consultation.
关 键 词:不确定性 面向订单装配 交货期预测 支持向量回归
分 类 号:TP31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.151.216