检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张响亮 Tak Man Desmond Lee Georgios Pitsilis
机构地区:[1]King Abdullah University of Science and Technology [2]Faculty of Science, Technology and Communication, University of Luxembourg
出 处:《Journal of Computer Science & Technology》2013年第4期616-624,共9页计算机科学技术学报(英文版)
摘 要:Abstract Recommender systems (RS) have been found supportive and practical in e-commerce and been established as useful aiding services. Despite their great adoption in the user communities, RS are still vulnerable to unscrupulous producers who try to promote their products by shilling the systems. With the advent of social networks new sources of information have been made available which can potentially render RS more resistant to attacks. In this paper we explore the information provided in the form of social links with clustering for diminishing the impact of attacks. We propose two algorithms, CLUTR and WCLUTR, to combine clustering with "trust" among users. We demonstrate that CLuTR and WCLUTR enhance the robustness of RS by experimentally evaluating them on data from a public consumer recommender system Epinions.com.Abstract Recommender systems (RS) have been found supportive and practical in e-commerce and been established as useful aiding services. Despite their great adoption in the user communities, RS are still vulnerable to unscrupulous producers who try to promote their products by shilling the systems. With the advent of social networks new sources of information have been made available which can potentially render RS more resistant to attacks. In this paper we explore the information provided in the form of social links with clustering for diminishing the impact of attacks. We propose two algorithms, CLUTR and WCLUTR, to combine clustering with "trust" among users. We demonstrate that CLuTR and WCLUTR enhance the robustness of RS by experimentally evaluating them on data from a public consumer recommender system Epinions.com.
关 键 词:shilling attack recommender system collaborative filtering social trust CLUSTERING
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术] TP393.08[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28