检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jooil Lee Yanhua Jin Won Suk Lee
机构地区:[1]Department of Computer Science, Yonsei University
出 处:《Journal of Computer Science & Technology》2013年第4期636-646,共11页计算机科学技术学报(英文版)
基 金:supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (MEST) of Korea under Grant No. 2011-0016648
摘 要:A biclustering algorithm extends conventional clustering techniques to extract all of the meaningful subgroups of genes and conditions in the expression matrix of a microarray dataset. However, such algorithms are very sensitive to input parameters and show poor scalability. This paper proposes a scalable unsupervised biclustering framework, SUBic, to find high quality constant-row biclusters in an expression matrix effectively. A one-dimensional clustering algorithm is proposed to partition the attributes, that is, columns of an expression matrix into disjoint groups based on the similarity of expression values. These groups form a set of short transactions and are used to discover a set of frequent itemsets each of which corresponds to a bicluster. However, a bicluster may include any attribute whose expression value is not similar enough to others, so a bicluster refinement is used to enhance the quality of a bicluster by removing those attributes based on its distribution of expression values. The performance of the proposed method is comparatively analyzed through a series of experiments on synthetic and real datasets.A biclustering algorithm extends conventional clustering techniques to extract all of the meaningful subgroups of genes and conditions in the expression matrix of a microarray dataset. However, such algorithms are very sensitive to input parameters and show poor scalability. This paper proposes a scalable unsupervised biclustering framework, SUBic, to find high quality constant-row biclusters in an expression matrix effectively. A one-dimensional clustering algorithm is proposed to partition the attributes, that is, columns of an expression matrix into disjoint groups based on the similarity of expression values. These groups form a set of short transactions and are used to discover a set of frequent itemsets each of which corresponds to a bicluster. However, a bicluster may include any attribute whose expression value is not similar enough to others, so a bicluster refinement is used to enhance the quality of a bicluster by removing those attributes based on its distribution of expression values. The performance of the proposed method is comparatively analyzed through a series of experiments on synthetic and real datasets.
关 键 词:BICLUSTERING CLUSTERING expression matrix frequent itemset sub-matrix
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.235.247