Optical performance, structure and thermal stability of Al(lwt.-%Si)//Zr and Al(pure)//Zr multilayers designed for the 17-19 nm range  

Optical performance, structure and thermal stability of Al(lwt.-%Si)//Zr and Al(pure)//Zr multilayers designed for the 17-19 nm range

在线阅读下载全文

作  者:钟奇 李文斌 张众 朱京涛 黄秋实 李浩川 王占山 Philippe Jonnard Karine Le Guen Yanyan Yuan Jean-Michel Andre 周红军 霍同林 

机构地区:[1]Department Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092, China [2]Laboratoire de Chimie Physique-Matiere Rayonnement, UPMC Univ. Paris 06, CNRS UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05, Prance [3]National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China

出  处:《Chinese Optics Letters》2013年第13期144-147,共4页中国光学快报(英文版)

摘  要:We report on the optical performance, structure and thermal stability of periodic multilayer films con- taining Zr and Al(lwt.-%Si) or Al(pure) layers designed for the use as extreme ultraviolet (EUV) high reflective mirrors in the range of 1~19 am. The comparison of A1/Zr (Al(lwt.-%Si)/Zr and Al(pure)/Zr) multilayers fabricated by direct-current magnetron sputtering shows that the optical and structural per- formances of two systems have much difference because of Si doped in A1. From the results of grazing incidence X-ray reflection (GIXR), X-ray diffraction (XRD), and EUV, the Si can disfavor the crystalliza- tion of AI and smooth the interface, consequently increase the reflectance of EUV in the Al(lwt.-%Si)/Zr systems. For the thermal stability of two systems, the first significant structural changes appear at 250 ~C. The interlayers are transformed from symmetrical to asymmetrical, where the Zr-on-A1 interlayers are thicker than Al-on-Zr interlayers. At 295 ~C for Al(pure)/Zr and 298 ~C for Al(lwt.-%Si)/Zr, the interfaces consist of amorphous Al-Zr alloy transform to polycrystalline Al-Zr alloy which can decrease the surface roughness and smooth the interfaces. Above 300 ~C, the interdiffusion becomes larger, which can enlarge the differences between Zr-on-Al and Al-on-Zr interlayers. Based on the analyses, the Si doped in Al cannot only influence the optical and structural performances of Al/Zr systems, but also impact the reaction temperatures in the annealing process.We report on the optical performance, structure and thermal stability of periodic multilayer films con- taining Zr and Al(lwt.-%Si) or Al(pure) layers designed for the use as extreme ultraviolet (EUV) high reflective mirrors in the range of 1~19 am. The comparison of A1/Zr (Al(lwt.-%Si)/Zr and Al(pure)/Zr) multilayers fabricated by direct-current magnetron sputtering shows that the optical and structural per- formances of two systems have much difference because of Si doped in A1. From the results of grazing incidence X-ray reflection (GIXR), X-ray diffraction (XRD), and EUV, the Si can disfavor the crystalliza- tion of AI and smooth the interface, consequently increase the reflectance of EUV in the Al(lwt.-%Si)/Zr systems. For the thermal stability of two systems, the first significant structural changes appear at 250 ~C. The interlayers are transformed from symmetrical to asymmetrical, where the Zr-on-A1 interlayers are thicker than Al-on-Zr interlayers. At 295 ~C for Al(pure)/Zr and 298 ~C for Al(lwt.-%Si)/Zr, the interfaces consist of amorphous Al-Zr alloy transform to polycrystalline Al-Zr alloy which can decrease the surface roughness and smooth the interfaces. Above 300 ~C, the interdiffusion becomes larger, which can enlarge the differences between Zr-on-Al and Al-on-Zr interlayers. Based on the analyses, the Si doped in Al cannot only influence the optical and structural performances of Al/Zr systems, but also impact the reaction temperatures in the annealing process.

分 类 号:O484.41[理学—固体物理] O484.43[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象