Multilayers with high-reflectivity at 19.5 nm and low-reflectivity at 30.4 nm  

Multilayers with high-reflectivity at 19.5 nm and low-reflectivity at 30.4 nm

在线阅读下载全文

作  者:蒋励 朱京涛 张众 王占山 Michael Trubetskov Alexander V. Tikhonravov 

机构地区:[1]Department Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092, China [2]Lomonosov Moscow State University, Russia

出  处:《Chinese Optics Letters》2013年第13期154-157,共4页中国光学快报(英文版)

摘  要:The multilayer (ML) mirror with high-reflectivity (HR) at a specific emission line of 19.5 nm (Fe line) and low-reflectivity (LR) at 30.4 nm (He line) is needed to be designed and fabricated for observing the image of sun. Based on a variety of optimizations utilized different structures, the design is performed and the final results demonstrate that the reflectivity at 30.4 nm does not achieve minimum value when the reflectivity at 19.5 nm reaches the maximum value. The tradeoff should be done between the HR at 19.5 nm and LR at 30.4 nm. One optimized mirror is fabricated by direct current magnetron sputtering and characterized by grazing-incident X-ray diffraction (XRD) and synchrotron radiation (SR). The experimental results demonstrate that the ML achieves the reflectivity of 33.3% at 19.5 nm and of 9.6× 10-4 at 30.4 nm at the incident angle of 13°.The multilayer (ML) mirror with high-reflectivity (HR) at a specific emission line of 19.5 nm (Fe line) and low-reflectivity (LR) at 30.4 nm (He line) is needed to be designed and fabricated for observing the image of sun. Based on a variety of optimizations utilized different structures, the design is performed and the final results demonstrate that the reflectivity at 30.4 nm does not achieve minimum value when the reflectivity at 19.5 nm reaches the maximum value. The tradeoff should be done between the HR at 19.5 nm and LR at 30.4 nm. One optimized mirror is fabricated by direct current magnetron sputtering and characterized by grazing-incident X-ray diffraction (XRD) and synchrotron radiation (SR). The experimental results demonstrate that the ML achieves the reflectivity of 33.3% at 19.5 nm and of 9.6× 10-4 at 30.4 nm at the incident angle of 13°.

分 类 号:O484.43[理学—固体物理] TQ153.2[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象