机构地区:[1]College of Earth Science and Engineering, Hohai University
出 处:《Journal of Hydrodynamics》2013年第3期388-395,共8页水动力学研究与进展B辑(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No. 41272265);the Scientific Research and innovate Foundation to support college graduate of Jiangsu Province (Grant No. CX09B_167Z)
摘 要:The vertical seepage velocity is an important parameter in the groundwater-surface water (GW-SW) exchange process. It is reported that the periodical fluctuated temperature record of the streambed can be used to determine the seepage velocity. Based on a 1-D flow and heat transport model with a sinusoidal temperature oscillation at the upstream boundary, a new analytical model is built. This analytical model can be used to determine the seepage velocity from the amplitude ratio of the deep and shallow test points. The process of calculation is discussed. The field data are superimposed by multi-periods, so the spectrum analysis and the data filtering are desirable. For the typical seepage medium, the analytical model is effective to compute the seepage velocity between -2 m/d and 6 m/d by using the record of the daily period fluctuation. The temperature time-series analytical model is used to determine the upwards seepage under the condition that the spacing of test points is small (less than 0.2 m). Lastly, a case study for the Russian River shows that this model is very convenient to determine the temporal changes of the GW-SW exchange.The vertical seepage velocity is an important parameter in the groundwater-surface water (GW-SW) exchange process. It is reported that the periodical fluctuated temperature record of the streambed can be used to determine the seepage velocity. Based on a 1-D flow and heat transport model with a sinusoidal temperature oscillation at the upstream boundary, a new analytical model is built. This analytical model can be used to determine the seepage velocity from the amplitude ratio of the deep and shallow test points. The process of calculation is discussed. The field data are superimposed by multi-periods, so the spectrum analysis and the data filtering are desirable. For the typical seepage medium, the analytical model is effective to compute the seepage velocity between -2 m/d and 6 m/d by using the record of the daily period fluctuation. The temperature time-series analytical model is used to determine the upwards seepage under the condition that the spacing of test points is small (less than 0.2 m). Lastly, a case study for the Russian River shows that this model is very convenient to determine the temporal changes of the GW-SW exchange.
关 键 词:temperature record groundwater-surface water (GW-SW) exchange STREAMBED analytical model Russian River
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...