Ballistic learning control: formulation, analysis and convergence  

Ballistic learning control: formulation, analysis and convergence

在线阅读下载全文

作  者:Jianxin XU Deqing HUANG Wei WANG 

机构地区:[1]Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore

出  处:《控制理论与应用(英文版)》2013年第3期325-335,共11页

基  金:supported by the Science and Engineering Research Council (SERC) Research Grant (No. 092 101 00558)

摘  要:In this paper, we formulate and explore the characteristics of iterative learning in ballistic control problems. The iterative learning control (ILC) theory provides a suitable framework for derivations and analysis of ballistic control under learning process. To overcome the obstacles caused by uncertain gradient and redundant control input, we incorporate extra trials into iterative learning. With the help of trial results, proper control and updating direction can be determined. Then, iterative learning can be applied to ballistic control problem. Several initial state learning algorithms are studied for initial speed control, force control, as well as combined speed and angle control. In the end, shooting angle learning in the basketball shot process is simulated to verify the effectiveness of iterative learning methods in ballistic control problems.In this paper, we formulate and explore the characteristics of iterative learning in ballistic control problems. The iterative learning control (ILC) theory provides a suitable framework for derivations and analysis of ballistic control under learning process. To overcome the obstacles caused by uncertain gradient and redundant control input, we incorporate extra trials into iterative learning. With the help of trial results, proper control and updating direction can be determined. Then, iterative learning can be applied to ballistic control problem. Several initial state learning algorithms are studied for initial speed control, force control, as well as combined speed and angle control. In the end, shooting angle learning in the basketball shot process is simulated to verify the effectiveness of iterative learning methods in ballistic control problems.

关 键 词:Ballistic control Iterative learning control Initial state learning CONVERGENCE 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象