Every 3-connected {K_(1,3),N_(3,3,3)}-free graph is Hamiltonian  被引量:3

Every 3-connected {K_(1,3),N_(3,3,3)}-free graph is Hamiltonian

在线阅读下载全文

作  者:LIN HouYuan HU ZhiQuan 

机构地区:[1]School of Mathematics and Quantitative Economics,Shandong University of Finance and Economics [2]Faculty of Mathematics and Statistics,Central China Normal University

出  处:《Science China Mathematics》2013年第8期1585-1595,共11页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos.11071096 and 11271149);Hubei Provincial Department of Education (Grant No. D20111110);Jinan Science and Technology Bureau (Grant No. 20110205)

摘  要:For non-negative integers i,j and k,let N i,j,k be the graph obtained by identifying end vertices of three disjoint paths of lengths i,j and k to the vertices of a triangle.In this paper,we prove that every 3-connected {K1,3,N3,3,3 }-free graph is Hamiltonian.This result is sharp in the sense that for any integer i>3,there exist infinitely many 3-connected {K1,3,Ni,3,3 }-free non-Hamiltonian graphs.For non-negative integers i,j and k, let Ni,j,k be the graph obtained by identifying end vertices of three disjoint paths of lengths i,j and k to the vertices of a triangle. In this paper, we prove that every 3-connected {K1,3, N3,3,3}-free graph is Hamiltonian. This result is sharp in the sense that for any integer i 〉 3, there exist infinitely many 3-connected {K1,3, Ni,3,3)-free non-Hamiltonian graphs.

关 键 词:Hamiltonian graphs forbidden subgraphs claw-free graphs CLOSURE 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象