检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:XU ZheFeng
机构地区:[1]Department of Mathematics,Northwest University
出 处:《Science China Mathematics》2013年第8期1597-1606,共10页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No. 11001218);the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20106101120001)
摘 要:For any real constants λ1, λ2 C (0, 1], let n ≥ max{[1/λ1 ], [1/λ2]}, vn ≥ 2 be integers. Suppose integers a C [1, λ1n] and b E [1, λ2n] satisfy the congruence b ≡ am (rood n). The main purpose of this paper is to study the mean value of (a - b)2k for any fixed positive integer k and obtain some sharp asymptotic formulae.For any real constants λ1,λ2 ∈(0,1],let n max{[1/λ1],[1/λ2]},m 2 be integers.Suppose integers a ∈[1,λ1n] and b∈[1,λ2n] satisfy the congruence b ≡ a m(mod n).The main purpose of this paper is to study the mean value of(a-b) 2k for any fixed positive integer k and obtain some sharp asymptotic formulae.
关 键 词:INTEGER m-th power mod n difference incomplete interval
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90