基于Voronoi图的强降水过程空间非均匀性定量表征方法  被引量:1

Quantitative Representation of Spatial-Heterogeneities of Regional Persistent Heavy Precipitation Based on Voronoi Diagrams

在线阅读下载全文

作  者:彭小燕 杜银[2] 丁裕国[2] 

机构地区:[1]江苏省南通市气象局,南通226006 [2]南京信息工程大学大气科学系,南京210044

出  处:《气象科技》2013年第3期522-528,共7页Meteorological Science and Technology

基  金:江苏省青年气象科研基金(Q201207)资助

摘  要:利用Voronoi\Delaunay图模型影响范围和局部动态的特性,提出一种基于动态边界定量提取强降水过程空间非均匀分布特征的新方法,根据1959—2002年中国740站逐日降水资料,构建5日、10日两种时间尺度区域持续性年极端强降水过程序列,用以检验该方法的应用效果,并应用该方法分析了5日(10日)区域持续性年极端强降水过程空间非均匀分布特征及其演变规律。结果表明:与传统的数量统计方法和区域插值方法相比,该方法在强降水空间分布中心、过程内不同强度降水覆盖区域、降水集中区等的定量度量方面具有更高的分辨力和较好实际应用价值;气候趋势分析中在1959—2002年间,5日区域持续性年极端强降水过程出现日期有明显提前趋势。To describe the characteristics quantitatively of the spatial-heterogeneities of regional persistentheavy precipitation, a new approach is promoted, which can generate quantitatively the spatial- heterogeneities of regional persistent heavy precipitation based on the dynamic operation and computational geometry of the Voronoi/Delaunay model. The daily precipitation dataset in China from 1959 to 2002 is used to build the time series of regional 5-day (10-day) persistent extreme precipitation events to test the application effectiveness, and this method is applied to analyze the spatial-heterogeneities, variations, and climatic trends of annual-extreme regional 5 day and (10-day) persistent precipitation. The results indicate that comparing with the traditional quantitative statistic method and Kriging interpolation method, this method can easily handle the spatial-heterogeneities of regional persistent heavy precipitation and is applicable in the climate change, climate features, and impact researches, and there is a notable advance trend for the occurring date of annual-extreme regional 5-dav persistent Drecinitation from 1959 to 2002.

关 键 词:区域持续性强降水 空间非均匀性 气候趋势 

分 类 号:P458.121[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象