In-situ Dendrite/Metallic Glass Matrix Composites:A Review  被引量:6

In-situ Dendrite/Metallic Glass Matrix Composites:A Review

在线阅读下载全文

作  者:Junwei Qiao 

机构地区:[1]Laboratory of Applied Physics and Mechanics of Advanced Materials,College of Materials Science and Engineering,Taiyuan University of Technology

出  处:《Journal of Materials Science & Technology》2013年第8期685-701,共17页材料科学技术(英文版)

基  金:the financial support of the National Natural Science Foundation of China(No.51101110);the Youth Science Foundation of Shanxi Province.China(No. 2012021018-1);the Research Project Supported by Shanxi Scholarship Council of China(No.2012-032);Technology Foundation for Selected Overseas Chinese Scholar Ministry of Human Resources and Social Security of China;the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi

摘  要:The advanced fabrication of in-situ dendrite/metallic glass matrix (MGM) composites is reviewed. Herein, the semi- solid processing and Bridgman solidification are two methods, which can make the dendrites homogeneously dispersed within the metallic glass matrix. Upon quasi-static compressive loading at room temperature, almost all the in-situ composites exhibit improved plasticity, due to the effective block to the fast propagation of shear bands. Upon quasi-static tensile loading at room temperature, although the composites possess tensile ductility, the inhomogeneous deformation and associated softening dominates. High volume-fractioned dendrites and network structures make in-situ composites distinguishingly plastic upon dynamic compression. In-situ composite exhibits high tensile strength and softening (necking) in the supercooled liquid region, since the presence of high volume-fractioned dendrites lowers the rheology of the viscous glass matrix at high temperatures. At cryogenic temperatures, a distinguishingly-increased maximum strength is available; however, a ductile-to-brittle transition seems to be present by lowering the temperature. Besides, improved tension-tension fatigue limit of 473 MPa and four-point-bending fatigue limit of 567 MPa are gained for Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 MGM composites. High volume-fraction dendrites within the glass matrix induce increased effectiveness on the blunting and propagating resistance of the fatigue-crack tip. The fracture toughness of in-situ composites is comparable to those of the toughest steels and crystalline Ti alloys. During steady-state crack-growth, the confinement of damage by in-situ dendrites results in enhancement of the toughness.The advanced fabrication of in-situ dendrite/metallic glass matrix (MGM) composites is reviewed. Herein, the semi- solid processing and Bridgman solidification are two methods, which can make the dendrites homogeneously dispersed within the metallic glass matrix. Upon quasi-static compressive loading at room temperature, almost all the in-situ composites exhibit improved plasticity, due to the effective block to the fast propagation of shear bands. Upon quasi-static tensile loading at room temperature, although the composites possess tensile ductility, the inhomogeneous deformation and associated softening dominates. High volume-fractioned dendrites and network structures make in-situ composites distinguishingly plastic upon dynamic compression. In-situ composite exhibits high tensile strength and softening (necking) in the supercooled liquid region, since the presence of high volume-fractioned dendrites lowers the rheology of the viscous glass matrix at high temperatures. At cryogenic temperatures, a distinguishingly-increased maximum strength is available; however, a ductile-to-brittle transition seems to be present by lowering the temperature. Besides, improved tension-tension fatigue limit of 473 MPa and four-point-bending fatigue limit of 567 MPa are gained for Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 MGM composites. High volume-fraction dendrites within the glass matrix induce increased effectiveness on the blunting and propagating resistance of the fatigue-crack tip. The fracture toughness of in-situ composites is comparable to those of the toughest steels and crystalline Ti alloys. During steady-state crack-growth, the confinement of damage by in-situ dendrites results in enhancement of the toughness.

关 键 词:Bulk metallic glasses Composites Mechanical properties Dynamic loading MICROSTRUCTURES Shear bands 

分 类 号:TB333[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象