Fabrication of a flower-like Pd/CeO_2 material with improved three-way catalytic performance  被引量:1

Fabrication of a flower-like Pd/CeO_2 material with improved three-way catalytic performance

在线阅读下载全文

作  者:展宗城 刘晓军 何洪 宋丽云 李金洲 马东祝 

机构地区:[1]Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology

出  处:《Journal of Rare Earths》2013年第8期750-758,共9页稀土学报(英文版)

基  金:Project supported by National Natural Science Foundation of China (20877006, 20833011);Beijing Municipal Natural Science Foundation (2101002);the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR201107104, PHR200907105);National High Technology Research and Development Program (2011AA03A406);National Industrial Project of New Rare Earth Materials

摘  要:Pd/CeO2 catalysts with flower-like morphology were fabricated via an ultrasonic-assisted membrane reduction (UAMR) and hydrothermal methods. The catalysts were physically characterized and evaluated for three-way catalytic activities versus tradi- tional Pd/CeO2 catalysts. Flower-like Pd/CeO2 catalysts exhibited a higher catalytic performance and better thermal stability than the Pd/CeO2 prepared by conventional impregnation. The flower-like Pd/CeO2 catalysts were constructed from 20-50 nm thick nanosheet petals. These petals were in turn constructed from 10 nm CeO2 nanoparticles that self-assembled into the flower-like morphology re- sulting in abundant pores in all directions. The Pd nanoparticles were anchored and dispersed on both the interior and surface of the pores and had minimal sintering. When these catalysts were aged, the structure and morphology of the catalysts remained unchanged with important industrial implications for this new type of material including improved catalytic performance and high thermal stabil- ity. Regardless of the Pd loading, both the fresh and aged Pd/CeO2 catalysts prepared by the UAMR-hydrothermal method exhibited better performance than the corresponding samples prepared by conventional impregnation means.Pd/CeO2 catalysts with flower-like morphology were fabricated via an ultrasonic-assisted membrane reduction (UAMR) and hydrothermal methods. The catalysts were physically characterized and evaluated for three-way catalytic activities versus tradi- tional Pd/CeO2 catalysts. Flower-like Pd/CeO2 catalysts exhibited a higher catalytic performance and better thermal stability than the Pd/CeO2 prepared by conventional impregnation. The flower-like Pd/CeO2 catalysts were constructed from 20-50 nm thick nanosheet petals. These petals were in turn constructed from 10 nm CeO2 nanoparticles that self-assembled into the flower-like morphology re- sulting in abundant pores in all directions. The Pd nanoparticles were anchored and dispersed on both the interior and surface of the pores and had minimal sintering. When these catalysts were aged, the structure and morphology of the catalysts remained unchanged with important industrial implications for this new type of material including improved catalytic performance and high thermal stabil- ity. Regardless of the Pd loading, both the fresh and aged Pd/CeO2 catalysts prepared by the UAMR-hydrothermal method exhibited better performance than the corresponding samples prepared by conventional impregnation means.

关 键 词:three-way catalyst UAMR Pd nanoparticles flower-like morphology rare earths 

分 类 号:O643.36[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象