机构地区:[1]College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 21003 7, China [2]Chengdu Institute of Mountain Hazards and Envi- ronment, Chinese Academy of Sciences, Chengdu 610041, China
出 处:《Journal of Rare Earths》2013年第8期823-829,共7页稀土学报(英文版)
基 金:Foundation item: Project supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and National Basic Research Program of China (2006CB403301)
摘 要:To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi- tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0. 1 and 0.5 mg/L La3+ alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+ prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Frn', φPSll and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+ showed an optimal mitigative effect, while excess La3+ (5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p〈0.05). The results suggested that appropriate concentration of La3+ could effectively alleviate growth inhibition and injury ofA. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+ might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II ofA. philoxeroides under perchlorate stress.To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi- tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0. 1 and 0.5 mg/L La3+ alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+ prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Frn', φPSll and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+ showed an optimal mitigative effect, while excess La3+ (5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p〈0.05). The results suggested that appropriate concentration of La3+ could effectively alleviate growth inhibition and injury ofA. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+ might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II ofA. philoxeroides under perchlorate stress.
关 键 词:LANTHANUM PERCHLORATE AIternantheraphiloxeroides GROWTH chlorophyll fluorescence rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...