机构地区:[1]Wireless Technology Innovation Institute, Beijing University of Posts and Telecommunications
出 处:《The Journal of China Universities of Posts and Telecommunications》2013年第2期86-91,共6页中国邮电高校学报(英文版)
基 金:supported by the National Natural Science Foundation of China(61121001);Program for New Century Excellent Talents in University(NCET-10-0242)
摘 要:This paper presents a novel interference management strategy, to adaptively choose the best fractional frequency reuse (FFR) scheme for macro and femto networks. The strategy aims to maximize the system throughput taking into account a number of system constraints. Here, the system constrains consist of the outage constraints of two-tier users and macrocell spectral efficiency requirement. The detailed procedures of our proposed strategy are: 1) A reference signal received power (RSRP) based selection algorithm is presented to adaptively select the optional FFR schemes satisfying the outage constraints. 2) Considering the macrocell spectral efficiency, the optimal FFR scheme is selected from the optional FFR schemes at MeNB side, to achieve the maximum system throughput in two-tier femtocell networks. We study the efficacy of the proposed strategy using an long term evolution advanced (LTE-A) system level simulator. Simulation results show that our proposed interference management strategy can select the best FFR scheme to maximize the system throughput, and the FFR schemes derived by using RSRP-based selection algorithm can be the effective solutions to deploy femtocells in macrocells.This paper presents a novel interference management strategy, to adaptively choose the best fractional frequency reuse (FFR) scheme for macro and femto networks. The strategy aims to maximize the system throughput taking into account a number of system constraints. Here, the system constrains consist of the outage constraints of two-tier users and macrocell spectral efficiency requirement. The detailed procedures of our proposed strategy are: 1) A reference signal received power (RSRP) based selection algorithm is presented to adaptively select the optional FFR schemes satisfying the outage constraints. 2) Considering the macrocell spectral efficiency, the optimal FFR scheme is selected from the optional FFR schemes at MeNB side, to achieve the maximum system throughput in two-tier femtocell networks. We study the efficacy of the proposed strategy using an long term evolution advanced (LTE-A) system level simulator. Simulation results show that our proposed interference management strategy can select the best FFR scheme to maximize the system throughput, and the FFR schemes derived by using RSRP-based selection algorithm can be the effective solutions to deploy femtocells in macrocells.
关 键 词:FEMTOCELL FFR outage probability spectral efficiency RSRP
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...