基于ESPRIT的ULA波达方向估计改进算法  被引量:2

DOA Estimation Improved Algorithm for ULA Based on ESPRIT Algorithm

在线阅读下载全文

作  者:宋雪松[1] 姚桂锦[1] 徐洄 

机构地区:[1]吉林大学通信工程学院,长春130012 [2]吉林省高速公路管理局,长春130022

出  处:《吉林大学学报(信息科学版)》2013年第4期365-369,共5页Journal of Jilin University(Information Science Edition)

摘  要:针对MUSIC(Multiple Signal Classification)算法和ESPRIT(Estimated Signal Parameters via RotationalInvariance Technique)算法不能有效估计相干信源波达方向的问题,在修正MUSIC算法(Modified MUSIC)基础上,通过引用变换矩阵,在考虑阵列接收数据及其相应变换矩阵的自相关和互相关信息后,结合总体最小二乘算法TLS-ESPRITS(Total Least-Squares ESPRIT)提出了能同时适应相干和非相干信号情况的波达方向估计的改进ESPRIT算法(IM-ESPRIT:Improved ESPRIT),并在相干信号源来波角度间隔较小和低信噪比条件下,同常规CC-ESPRIT(Cross ESPRIT)算法进行比较。,结果表明,当相干信源角度间隔为3°且信噪比为0时,实现波达方向估计具有较好的估计精度和分辨率。MUSIC (Multiple Signal Classification) algorithm and ESPRIT (Estimated Signal Parameters via Rotational Invariance Technique) algorithm can not effectively achieve DOA (Direction-of-Anival) estimation of the coherent sources. Based on MMUSIC (Modified MUSIC ), introducing the transformation matrix and considering the autocorrelation and cross-autocorrelation of the array output and the corresponding transformed matrix, and combined with TLS-ESPRIT (Total Least-Squares ESPRIT) algorithm, an IM-ESPRIT (Improved ESPRIT) algorithm that is suitable for the two cases of the non-coherent and coherent sources has been proposed. Compared with the conventional CC-ESPRIT algorithm (Cross ESPRIT algorithm) , when the angle of coherent source interval is 3~ and signal-to-noise ratio of 0, DOA estimation is realized. It is shown by the numerical simulation that IM-ESPRIT algorithm has a better estimation accuracy under the condition of the small angle interval of the coherent sources and lower SNR.

关 键 词:DOA估计 相干信号 特征子空间 互相关协方差 IM-ESPRIT算法 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象