检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶施仁[1] 游湘涛[1] 史忠植[1] 李晓黎[1]
出 处:《计算机研究与发展》2000年第10期1166-1172,共7页Journal of Computer Research and Development
基 金:国家自然科学基金!(项目编号 6 980 3 0 10 );国家"八六三"高技术研究发展计划基金资助!(项目编号 86 3 -5 11-946 ;86 3 -818-0 7)
摘 要:相似性的计算是 CBR和 k- NN等 L azy L earning研究中十分关键的问题 .研究了降低相似性计算代价的方法 ,并以 k- NN为例 ,介绍了基于部分特征的相似性算法和基于投影的相似性算法 ,它们能够通过减少计算距离过程中所涉及的特征数目来提高算法的效率 .实验表明效率的提高是明显的 ,其中基于部分特征的 k- NN算法效率提高 2 6%~ 2 8% ,基于投影的 k- NN算法效率提高 48%~ 83% .作者已将该算法应用到工程中 .Similarity is a pivotal notion in research on lazy learning, such as case based reasoning and k NN (nearest neighbor). A method of how to decrease complexity of computing similarity is studied, and a similarity calculation algorithm is introduced, that is based on partial features and the similarity calculation algorithm that is based on projection. For briefness and clarity, they are described in the procedure of k NN: partial feature based k NN algorithm and projection based k NN algorithm. In the steps of acquiring distance, using only few features can improve efficiency. This improvement is remarkable in our experiment: the former increases about 26%~28%, and the latter increases from 48% to 83%. At the same time, those algorithms have been adapted in application successfully.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15