检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李珊 容新尧 刘赟 刘征宇 Klaus FRAEDRICH
机构地区:[1]Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University [2]Chinese Academy of Meteorological Sciences [3]Center for Climatic Research and Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison [4]Max Planck Institute for Meteorology
出 处:《Advances in Atmospheric Sciences》2013年第5期1406-1420,共15页大气科学进展(英文版)
基 金:supported by 2012CB955201 and GYHY200906016
摘 要:This paper introduces a new approach for the initialization of ensemble numerical forecasting: Dynamic Analogue Initialization (DAI). DAI assumes that the best model state trajectories for the past provide the initial conditions for the best forecasts in the future. As such, DAI performs the ensemble forecast using the best analogues from a full size ensemble. As a pilot study, the Lorenz63 and Lorenz96 models were used to test DAI's effectiveness independently. Results showed that DAI can improve the forecast significantly. Especially in lower-dimensional systems, DAI can reduce the forecast RMSE by ~50% compared to the Monte Carlo forecast (MC). This improvement is because DAI is able to recognize the direction of the analysis error through the embedding process and therefore selects those good trajectories with reduced initial error. Meanwhile, a potential improvement of DAI is also proposed, and that is to find the optimal range of embedding time based on the error's growing speed.This paper introduces a new approach for the initialization of ensemble numerical forecasting: Dynamic Analogue Initialization (DAI). DAI assumes that the best model state trajectories for the past provide the initial conditions for the best forecasts in the future. As such, DAI performs the ensemble forecast using the best analogues from a full size ensemble. As a pilot study, the Lorenz63 and Lorenz96 models were used to test DAI's effectiveness independently. Results showed that DAI can improve the forecast significantly. Especially in lower-dimensional systems, DAI can reduce the forecast RMSE by ~50% compared to the Monte Carlo forecast (MC). This improvement is because DAI is able to recognize the direction of the analysis error through the embedding process and therefore selects those good trajectories with reduced initial error. Meanwhile, a potential improvement of DAI is also proposed, and that is to find the optimal range of embedding time based on the error's growing speed.
关 键 词:INITIALIZATION ensemble forecast ANALOGUE error growth
分 类 号:P456[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.10