机构地区:[1]School of Materials Science and Engineering, Wuhan University of Technology [2]School of Materials Science and Engineering, Hebei United University [3]School of Materials Science and Engineering, Hubei University
出 处:《Journal of Wuhan University of Technology(Materials Science)》2013年第4期715-720,共6页武汉理工大学学报(材料科学英文版)
基 金:Funded by the Major State Basic Research Development Program of China(973Program)(No.2009CB623201)
摘 要:The effect of two different curing regimes on the polymerization degree of C-S-H in hardened cement pastes within 28 d were investigated by measuring the chemical environments of 29Si with magic angle spinning (MAS) nuclear magnetic resonance (NMR) and by analyzing the 29Si NMR spectra with deconvolution technique. The experimental results indicate that, at curing regime of constant temperature of 20℃, the polymerization of C-S-H increases and then decreases with curing age, and the A1/Si ratio increases gradually with curing age, furthermore, the two non-bridging oxygen bonds of bridging silicate tetrahedra in C-S-H structure mainly bond to H+. At curing regime of variable temperature, the polymerization of C-S-H firstly increases then changes slightly and subsequently decreases with the temperature from low to high and then to low, and the A1/Si ratio firstly increases then keeps invariant and subsequently slightly decreases. Moreover, the temperature decreasing is advantageous for the Ca2+ to be bonded to the bridging silicate tetrahedra and entering into the interlayer of C-S-H structure. The polymerization of C-S-H at curing regime of variable temperature is higher than that cured at constant temperature, but the curing regime of constant temperature is more beneficial to the substitution of AP for Si4+ than that of variable temperature.The effect of two different curing regimes on the polymerization degree of C-S-H in hardened cement pastes within 28 d were investigated by measuring the chemical environments of 29Si with magic angle spinning (MAS) nuclear magnetic resonance (NMR) and by analyzing the 29Si NMR spectra with deconvolution technique. The experimental results indicate that, at curing regime of constant temperature of 20℃, the polymerization of C-S-H increases and then decreases with curing age, and the A1/Si ratio increases gradually with curing age, furthermore, the two non-bridging oxygen bonds of bridging silicate tetrahedra in C-S-H structure mainly bond to H+. At curing regime of variable temperature, the polymerization of C-S-H firstly increases then changes slightly and subsequently decreases with the temperature from low to high and then to low, and the A1/Si ratio firstly increases then keeps invariant and subsequently slightly decreases. Moreover, the temperature decreasing is advantageous for the Ca2+ to be bonded to the bridging silicate tetrahedra and entering into the interlayer of C-S-H structure. The polymerization of C-S-H at curing regime of variable temperature is higher than that cured at constant temperature, but the curing regime of constant temperature is more beneficial to the substitution of AP for Si4+ than that of variable temperature.
关 键 词:curing temperature CEMENT C-S-H POLYMERIZATION A1/Si ratio
分 类 号:TU528[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...