利用重叠社区检测技术提高大众分类网络的个性化推荐性能  

Leveraging Overlapping Communities Detection Improve Personalized Recommendation in Folksonomy Networks

在线阅读下载全文

作  者:苏晓萍[1,2] 宋玉蓉[3] 楼俊钢[2] 蒋云良[2] 

机构地区:[1]南京工业职业技术学院计算机与软件学院,南京210046 [2]湖州师范学院信息工程学院,浙江湖州313000 [3]南京邮电大学自动化学院,南京210003

出  处:《小型微型计算机系统》2013年第9期2036-2041,共6页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61103051)资助;教育部人文社会科学研究项目(12YJAZH120)资助;江苏省自然科学基金项目(BK2010526)资助;湖州市自然科学基金项目(2011YZ08)资助

摘  要:在大众分类网络中,允许用户使用个性化标签对资源进行标注,标签可以使用户方便地表达的自己的兴趣与偏好.但是,标签自由、松散的分类方式使标签存在冗余、歧义以及一词多义的问题,使用户难以发现自己需要的资源,因此在基于标签的推荐系统中,推荐精确性低,用户体验差,社区发现(聚簇)技术是解决这一问题的重要手段.本文从构建标签共现图入手,采用标签共现图的重叠社区发现技术来理解标注的正确含义、减少冗余歧义标签带来的噪声.在此基础上设计了完整的个性化推荐方案,经过真实标签网络数据验证表明标签重叠社区检测能够提高推荐质量,算法在精确性和多样性上均有较好的改进.In folksonomy based networks, users are allowed to annotate conveying the user's interest and preference information. However, this it certain costs:redundant, ambiguous and polysemy, which can render resources with personalized tags, which can facilitate users flexibility and loosening method of classification brings with resource discovery difficult. So, in tag-based recommenda- tion, the recommended result of precision and diversity is low and has a poor user experience. Communities detection ( clustering } provides a means to remedy these problems. Starting from a tagging co-occurrence network, we leverage overlapping communities de- tection method in tagging network to comprehend the proper meaning of the tags and reduce tagging noise. Based on o- verlapping communities detection, a complete scheme of personalized recommendation was presented. We validate this approach through evaluation of proposed personalization algorithm using data from a real collaborative tagging Web site, the result demonstrates that overlapping communities detection could considerably improve the precision and diversity of recommendations.

关 键 词:大众分类 标签 重叠社区发现 个性化推荐 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象