检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王浩[1] 曹龙雨[1] 姚宏亮[1] 李俊照[1]
机构地区:[1]合肥工业大学计算机与信息学院合肥230009
出 处:《模式识别与人工智能》2013年第8期729-739,共11页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金资助项目(No.61070131,61175051)
摘 要:现有的贝叶斯推理算法不同程度地存在推理精度低或推理时间长的问题.文中提出一种基于Markov毯分解的抽样近似推理算法(LSIA-MB).LSIA-MB算法利用HITON_MB算法寻找查询结点的Markov毯,进而利用动态规划方法学习边的后验概率,确定变量之间的因果关系,获得一个关于查询结点的Markov局部网络模型.最后,在Markov局部模型上执行Gibbs Sampling.通过对Markov局部模型的抽样,极大降低推理的计算维数.同时,由于Markov局部网络模型包含与目标结点相关的完整信息,从而保证局部抽样推理的精度.算法分析和在标准Alarm网的实验结果均表明,LSIA-MB算法降低推理时间,且提高推理精度.LSIA-MB算法在上海股票交易网络上的推理预测结果显示出较强的实用性.Current inference algorithms of Bayesian networks are weak on inference precision and inference time to a certain degree. Therefore, in this paper a practical and reliable inference method, sampling approximate inference algorithm based on Markov blanket (LSIA-MB), is presented. Firstly, HITON_MB algorithm is utilized to obtain the Markov blanket of the query node and then the dynamic programming algorithm is used to learn the posterior probability of edges to get a Markov local network model of the query node. Finally, Gibbs sampling inference algorithm is executed on the Markov local model. The sampling on the local model significantly reduces the calculation dimensions. The inference precision is retained because the Markov local model contains the complete information associated with the query node, Algorithm analysis and experimental results on standard Alarm network show LS!A-MB algorithm significantly reduces the inference time and improves the inference precision. The inference results of LSIA-MB algorithm on the Shanghai stock exchange network show the algorithm has strong practicability.
关 键 词:近似推理 贝叶斯网络 Markov毯 吉布斯抽样
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15