基于修正的结构相似度为测度的三维脑图像配准  被引量:1

Three-dimensional Image Registration Based on Modified Structural Similarity

在线阅读下载全文

作  者:李京娜[1,2] 王国宏[1] 孙少燕[3] 王刚[2] 

机构地区:[1]海军航空工程学院电子信息工程系,山东烟台264001 [2]鲁东大学信息与电气工程学院,山东烟台264025 [3]鲁东大学数学与信息学院,山东烟台264025

出  处:《中国医学影像学杂志》2013年第8期618-623,共6页Chinese Journal of Medical Imaging

基  金:鲁东大学横向基金项目(2010HX007)

摘  要:结构相似度通常用来评估图像质量。当空间位置发生改变时,图像间的结构相似度也会随之发生变化,近年已用作单模态图像配准测度。对其进行适当修改,提出一种新的基于像素灰度的配准测度——修正的结构相似度函数(MSSIM),并且应用于不同分辨率MR/CT及MR/PET三维临床脑图像(由Vanderbilt大学提供)配准中,算法首先做质心对齐,然后利用Powell算法"由粗到精"对下采样图像配准,再由8点法评估配准质量。结果显示,此测度函数具有良好的配准性能,能够完全自动地达到亚像素级配准精度,鲁棒性较高,但运算速度也较慢。Structural similarity is often used to assess image quality. The fuuction that structural similarity between images changes along with spatial location has been employed in one-dimensional image registration in recent years. We modified it and put forward a new registration metric based on voxel gray-modified structural similarity (MSSIM), applying to three-dimensional brain image registration of MR/CT and MR/PET with different resolution (provided by the Vanderbilt University). It starled from centroid alignment, and then sample image registration was perbrmed according to the Powe Algorithm, followed by quality assessment by eight-point algorithm. It turned out that the registration metric perlbrmed well and could reach the accuracy of sub-pixel registration fully and automatically. The robustness was high but the operation was rather slow

关 键 词:脑图像 图像处理 计算机辅助 结构相似度函数 图像配准 

分 类 号:R445[医药卫生—影像医学与核医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象