检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田玉玲[1]
机构地区:[1]太原理工大学计算机科学与技术学院,太原030024
出 处:《南京航空航天大学学报》2013年第4期544-549,共6页Journal of Nanjing University of Aeronautics & Astronautics
基 金:国家自然科学基金重点(50335030)资助项目;山西省自然科学基金(2013011018-1)资助项目
摘 要:针对复杂设备系统中故障诊断知识获取困难的问题,借鉴生物体液免疫机理,提出了用于故障诊断的免疫学习模型。将检测器定义为B细胞及其所包含的若干抗体结构,采用B细胞和抗体双重学习机制概括在抗原数据中发现的模式,不但解决了因故障征兆的混叠导致故障难以辨别的问题,而且能够不断补充和完善诊断知识。实现已知故障和未知故障类型的检测与学习,使系统的诊断能力达到最优。通过异步电动机故障实验证明了该算法可以提高故障检测的效率与准确率。In complex equipment system, the knowledge of fault diagnosis could hardly be precise and complete. Inspired by the biological humoral immunity, an immune learning model for fault diagnosis is proposed. The detectors are defined as Blymphocyte and antibody structures in the Blymphocyte. The patterns of antigen are generalized by using double learning mechanisms of Blymphocyte and antibody. The mechanism not only solves the problems that how to recognize the faults caused by the overlap of the omens, but also continuously supplements and improves the diagnostic knowledge. The system can detect and learn known and unknown fault types, and achieve optimal diagnostic results. Experiments were undertaken with induce motor to demonstrate the efficiency and accuracy of the fault detection.
分 类 号:TH133[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33