检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山西大同大学数学与计算机科学学院,山西大同037009
出 处:《山东大学学报(理学版)》2013年第8期78-82,87,共6页Journal of Shandong University(Natural Science)
基 金:山西省高校科技项目(20121015)
摘 要:在经典马尔可夫可修系统模型的基础上,把系统的状态空间分为工作状态集与故障状态集,根据系统运行水平的不同,又把工作状态集划分为完全工作状态集与疲劳工作状态集。当系统在疲劳工作状态集运行的时间小于给定的常数τ时,可以认为系统在这段时间也是处于完全工作状态,即疲劳影响可以忽略,而当系统在疲劳工作状态集运行的时间大于给定的常数τ,则这段时间不能被忽略,从而建立了疲劳影响可忽略的可修系统新模型。运用Laplace变换方法以及生物药理学的离子通道建模理论,求得了原模型与新模型的一些可靠性指标。最后用一个数值算例对所得结论进行了模拟实现。Based on the classical Markov repairable system, the state space of the system is divided into the set of working states and the set of failure states. Further, the set of the working states is divided into the set of the fully working states and the set of the fatigue working states based on the different working levels. If the sojourn time that the system is in the fatigue working states is less than a given constant τ, then this fatigue working time can be omitted, i.e. the system is thought of as excellent working during this fatigue working time. Otherwise, If the sojourn time that the system is in the fatigue working states is more than the given constant τ, then this fatigue working time can’t be omitted. Based on this assumption, aggregated Markov repairable system with fatigue time omission is modeled. Some reliability indexes of the original model and the new model are derived by using Laplace transform and the IonChannel modeling theory. Finally, a numerical example is given to illustrate these results obtained in the paper.
关 键 词:马尔可夫可修系统 疲劳影响忽略 可靠性 聚合随机过程
分 类 号:O213.2[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.189.95