机构地区:[1]Water and Water Structure Eng. Dept., Faculty of Eng., Zagazig University [2]Irrigation and Hydraulics Dept., Faculty of Eng., El-Mansoura University
出 处:《China Ocean Engineering》2013年第4期451-468,共18页中国海洋工程(英文版)
摘 要:The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt), reflection (kr) and energy dissipation (ka) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi^L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=l.25 and it decreases with the increasing h/L, HJL and B/L when D/h〈1.0. The dissipation coefficient (kd) increases with the increasing h/L, HilL and B/L when D/h〈_l.O and it decreases when D/h=l.25. In which, it is possible to achieve values ofkt smaller than 0.3, k~ larger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L〉0.22, B/L〉O. 13, and H/L 〉0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt), reflection (kr) and energy dissipation (ka) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi^L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=l.25 and it decreases with the increasing h/L, HJL and B/L when D/h〈1.0. The dissipation coefficient (kd) increases with the increasing h/L, HilL and B/L when D/h〈_l.O and it decreases when D/h=l.25. In which, it is possible to achieve values ofkt smaller than 0.3, k~ larger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L〉0.22, B/L〉O. 13, and H/L 〉0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.
关 键 词:water waves porous breakwaters wave attenuation wave transmission wave reflection wave dissipation
分 类 号:TV139.2[水利工程—水力学及河流动力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...