Distribution of the tropical Pacific surface zonal wind anomaly and its relation with two types of El Nio  被引量:2

Distribution of the tropical Pacific surface zonal wind anomaly and its relation with two types of El Nio

在线阅读下载全文

作  者:汪洋 陈锦年 王宏娜 

机构地区:[1]Institute of Oceanology,Chinese Academy of Sciences [2]Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences [3]University of Chinese Academy of Sciences

出  处:《Chinese Journal of Oceanology and Limnology》2013年第5期1137-1152,共16页中国海洋湖沼学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(Nos.41076010,41206017);the National Basic Research Program of China(973 Program)(No.2012CB417402)

摘  要:E1 Nino events with an eastern Pacific pattern (EP) and central Pacific pattern (CP) were first separated using rotated empirical orthogonal functions (REOF). Lead/lag regression and rotated singular value decomposition (RSVD) analyses were then carried out to study the relation between the surface zonal wind (SZW) anomalies and sea surface temperature (SST) anomalies in the tropical Pacific. A possible physical process for the CP E1 Nifio was proposed. For the EP E1 Nino, strong westerly anomalies that spread eastward continuously produce an anomalous ocean zonal convergence zone (ZCZ) centered on about 165°W. This SZW anomaly pattern favors poleward and eastward Sverdrup transport at the equator. For the CP E1Nino, westerly anomalies and the ZCZ are mainly confined to the western Pacific, and easterly anomalies blow in the eastern Pacific. This SZW anomaly pattern restrains poleward and eastward Sverdrup transport at the equator; however, there is an eastward Sverdrup transport at about 5°N, which favors the wanning of the north-eastern tropical Pacific. It is found that the slowness of eastward propagation of subsurface warm water (partly from the downwelling caused by Ekman convergence and the ZCZ) is due to the slowdown of the undercurrent in the central basin, and vertical advection in the central Pacific may be important in the formation and disappearance of the CP E1 Nifio.El Nio events with an eastern Pacific pattern(EP) and central Pacific pattern(CP) were first separated using rotated empirical orthogonal functions(REOF).Lead/lag regression and rotated singular value decomposition(RSVD) analyses were then carried out to study the relation between the surface zonal wind(SZW) anomalies and sea surface temperature(SST) anomalies in the tropical Pacific.A possible physical process for the CP El Ni o was proposed.For the EP El Ni o,strong westerly anomalies that spread eastward continuously produce an anomalous ocean zonal convergence zone(ZCZ) centered on about 165°W.This SZW anomaly pattern favors poleward and eastward Sverdrup transport at the equator.For the CP El Nio,westerly anomalies and the ZCZ are mainly confined to the western Pacific,and easterly anomalies blow in the eastern Pacific.This SZW anomaly pattern restrains poleward and eastward Sverdrup transport at the equator;however,there is an eastward Sverdrup transport at about 5°N,which favors the warming of the north-eastern tropical Pacific.It is found that the slowness of eastward propagation of subsurface warm water(partly from the downwelling caused by Ekman convergence and the ZCZ) is due to the slowdown of the undercurrent in the central basin,and vertical advection in the central Pacific may be important in the formation and disappearance of the CP El Nio.

关 键 词:surface zonal wind anomaly CP (central Pacific) E1 Nino rotated empirical orthogonal function rotated singular value decomposition zonal convergence physical process 

分 类 号:P425[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象