Achievable rate region for the multiple-access channel with multiple cognitive transmitters  

Achievable rate region for the multiple-access channel with multiple cognitive transmitters

在线阅读下载全文

作  者:GUO Yu-chen NIU Kai XU Wen-jun HE Zhi-qiang LIN Jia-ru 

机构地区:[1]Key Lab of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications

出  处:《The Journal of China Universities of Posts and Telecommunications》2013年第3期20-25,24-25,共6页中国邮电高校学报(英文版)

基  金:supported by the National Basic Research Program of China (2009CB320401);the National Natural Science Foundation of China (61101117);Research Funds for Doctoral Program of Higher Education of China (20090005110003);National Key Scientific and Technological Project of China (2010ZX03003-001, 2012ZX03004005-002);Fundamental Research Funds for the Central Universities (BUPT2012RC0112)

摘  要:A scenario where one 'dumb' radio and multiple cognitive radios communicating simultaneously with a common receiver is considered. In this paper, we derive an achievable rate region of the multiple-user cognitive multiple-access channel (MUCMAC) under both additive white Gaussian noise (AWGN) channel and rayleigh fading channel, by using a combination of multiple user dirty paper coding (DPC) and superposition coding. Through cognition, it is assumed that the secondary users (SUs) are able to obtain the message of the primary user (PU) non-causally beforehand. Using this side information, the SUs can perform multiple user DPC to avoid the interference from the SU. Besides, the SUs can also allocate part of their transmit power to aid the PU, using superposition coding. Therefore, the capacity region of traditional multiple-access channel (MAC) can be enlarged. Moreover, some asymptotic results are shown as the number of SUs increases. In the AWGN case, it is illustrated that the maximum achievable rate of the PU grows logarithmically with the increase of the number of SUs, whereas in the Rayleigh case, we show that the cognitive gain will increase with the decreasing of the channel signal to noise ratio (SNR).A scenario where one 'dumb' radio and multiple cognitive radios communicating simultaneously with a common receiver is considered. In this paper, we derive an achievable rate region of the multiple-user cognitive multiple-access channel (MUCMAC) under both additive white Gaussian noise (AWGN) channel and rayleigh fading channel, by using a combination of multiple user dirty paper coding (DPC) and superposition coding. Through cognition, it is assumed that the secondary users (SUs) are able to obtain the message of the primary user (PU) non-causally beforehand. Using this side information, the SUs can perform multiple user DPC to avoid the interference from the SU. Besides, the SUs can also allocate part of their transmit power to aid the PU, using superposition coding. Therefore, the capacity region of traditional multiple-access channel (MAC) can be enlarged. Moreover, some asymptotic results are shown as the number of SUs increases. In the AWGN case, it is illustrated that the maximum achievable rate of the PU grows logarithmically with the increase of the number of SUs, whereas in the Rayleigh case, we show that the cognitive gain will increase with the decreasing of the channel signal to noise ratio (SNR).

关 键 词:cognitive radios MAC superposition coding DPC 

分 类 号:TN830[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象