改进PSO-RBFNN算法在退化型产品寿命预测中的应用  被引量:1

Application of APSO-RBFNN Algorithm on Degradation Production Lifetime Predition

在线阅读下载全文

作  者:付霖宇[1] 王浩伟[1,2] 

机构地区:[1]海军航空工程学院兵器科学与技术系 [2]91880部队

出  处:《海军航空工程学院学报》2013年第4期412-416,共5页Journal of Naval Aeronautical and Astronautical University

基  金:国家部委基础科研基金资助项目(40108)

摘  要:针对部分高可靠性产品退化规律无法掌握的难题,提出了使用改进粒子群优化—基于神经网络函数(PSO-RBFNN)算法拟合样品退化轨迹、预测伪寿命值的方法。首先,通过改进PSO算法对RBFNN进行训练优化;然后,使用部分测量数据对训练后的RBFNN进行准确度测试;最后,通过RBFNN预测样品退化轨迹,估计出伪寿命值。使用某型电连接器的加速退化试验数据对提出的方法进行了试验验证,成功对该型电连接器进行了寿命预测,得出平均寿命为200 412 h。According to the problem that the degradation rule of some high-reliability production cannot be acqurled, the APSO-RBFNN algorithm, which was ued to fit the degradation path and predict the pseudo lifetime, was proposed. Firstly, RBFNN was trained and optimized through APSO. Then, the accuracy of trained RBFNN was tested with parts of measurements. Lastly, the RBFNN was applied to predict the degradation path of production and then evaluating the lifetimes. The proposed approach was methodologically explained and experimentally was evaluated using accelerated degradation data of some electrical connector. The lifetime of electrical conuector was successfully predicted and the average lifetime was obtained, 200412 hours.

关 键 词:寿命预测 退化轨迹 粒子群优化-基于神经网络函数 伪寿命 

分 类 号:TB114.3[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象