机构地区:[1]中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北武汉430074 [2]中国地质大学(武汉)地质过程与矿产资源国家重点实验室,湖北武汉430074
出 处:《地球科学进展》2013年第9期1049-1056,共8页Advances in Earth Science
基 金:国家重大科学研究计划项目"古海洋MCP储碳的生物地球化学过程机制及MCP定量模型预测"(编号:2013CB955704);教育部新世纪优秀人才支持计划项目"华北燕山盆地早中元古代古海洋化学时空演化及其对早期真核生命演化的影响"(编号:NCET-11-0724)资助
摘 要:Fe元素在自然界储量丰富,而Mo元素则是海水中储量最丰富的过渡金属元素。由于Fe,Mo对其所在环境的氧化还原条件非常敏感,近年来随着分析技术的进步,Fe与Mo同位素组成和变化被广泛用于鉴别古代海洋氧化还原状态及其演化。系统总结了古海洋化学研究中Fe与Mo同位素分馏机理和自然分布,并对当前获得的Fe—Mo同位素地史记录及其所指示的古海洋氧化还原状态进行了归纳与部分解释。造成Fe同位素分馏最明显的过程是氧化还原反应,氧化态的Fe通常具有更重的Fe同位素组成;此外,微生物作用及非生物作用下的黄铁矿生成过程也会产生明显的Fe同位素分馏。在海洋环境中Mo同位素的分馏主要与沉积物中铁锰(氢)氧化物吸附过程有关,铁锰(氢)氧化物吸附Mo的过程中,铁锰(氢)氧化物中倾向富集同位素较轻的Mo,造成海水中Mo同位素偏重,而硫化环境下的Mo沉积几乎不造成Mo同位素的分馏。Fe-Mo同位素的地史记录很好地说明了地质历史各时期海洋的氧化还原状态,在2.3Ga以前海洋主要为铁化的状态,其中在2.6~2.5Ga时氧含量略有增加;2.3~1。8Ga之间地球表面初步氧化,硫化物沉积增加;1.8~0.8Ga时海洋中的硫化环境得到了扩张;0.8Ga以后地球表层逐步氧化,硫化水体消退。最后,对古海洋化学研究中Fe.Mo同位素研究未来的工作重点给予了展望。Iron (Fe) seawater. Due to their hi as well as variations have is abundant in nature while molybdenum (Mo) is the most abundant transition metal in gh sensitivity to the redox state of the environment, the isotopic compositions of Fe and Mo been widely used to probe the redox conditions and the evolution of ancient oeean chemis- try in favor of improved analytical techniques. Here, we summarized isotopic fractionation mechanisms and natural distribution of both iron and molybdenum isotopes, and further we summarized and partially reinterpreted the redox evolution of ancient oceans through time based on available Fe-Mo data compiled in this study. The process that causes the largest iron isotope fractionation is redox reaction and the iron in oxidation state is generally enriched in 56Fe. Biotic and abiotic pyrite formations also produce a large Fe isotope fractionations. Isotopic fractionation of mo- lybdenum in seawater is mainly caused by the adsorption process of dissolved Mo onto ferromanganese oxides or hy- droxides in sediments. Fe-Mn (hydro)oxides tend to adsorb isotopically light molybdenum resulting in the isotopic composition of Mo in seawater heavier. However, the Mo sinks in euxinic settings cause almost no molybdenum iso- tope fractionation. Tile Fe-Mo isotope isotopic records through geological timegenerally suggest similar ocean redox evolution: Oceans older than 2.3 Ga was mainly dominated by ferruginous condition, and there was a slight in- crease in oxygen content between 2.6 and 2.5 Ga. Earth' s surface was initially oxidized during 2.3 to 1.8 Ga, during which euxinic deposition of sulfide was elevated. Euxinic waters may have expanded greatly between 1.8 and O. 8 Ga, and after that, Earth' s surface had being gradually oxidized and the euxinic waters shrank substantially. Finally, suggestions are proposed for further work on the Fe-Mo isotope research in the context of ancient ocean chemistry.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...