检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Masashi HAMANAKA Toshio NAKATSU
机构地区:[1]Department of Mathematics, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan [2]Institute for Fundamental Sciences, Setsunan University, 17-8 Ikeda Nakamachi, Neyagawa, Osaka 572-8508, Japan
出 处:《Frontiers of Mathematics in China》2013年第5期1031-1046,共16页中国高等学校学术文摘·数学(英文)
摘 要:We discuss the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construc- tion of U(N) instantons in noncommutative (NC) space and give some exact instanton solutions for various noncommutative settings. We also present a new formula which is crucial to show an origin of the instanton number for U(1) and to prove the one-to-one correspondence between moduli spaces of the noncommutative instantons and the ADHM data.We discuss the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construc- tion of U(N) instantons in noncommutative (NC) space and give some exact instanton solutions for various noncommutative settings. We also present a new formula which is crucial to show an origin of the instanton number for U(1) and to prove the one-to-one correspondence between moduli spaces of the noncommutative instantons and the ADHM data.
关 键 词:INSTANTONS noncommutative geometry
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.37