检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学水工结构与水环境研究所,浙江杭州310058
出 处:《浙江大学学报(工学版)》2013年第8期1361-1365,1378,共6页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基资助项目(50379046;50879075);水体污染控制与治理国家科技重大专项资助项目(2008ZX07421-006)
摘 要:为了提高河流糙率反演的数值稳定性及结果合理性,以糙率空间分布平滑性作为反演正则化所需的先验信息,建立一个兼顾水文观测信息和糙率分布平滑性的河流糙率反演的目标函数,利用广义逆理论和敏度矩阵的概念进一步确定目标函数的下降方向,并采用拟牛顿法来逐步寻优.通过一个由14条河段组成的河网算例,系统分析模型解的唯一性、数值稳定性和结果可靠性等特性.结果表明:引入河流糙率空间分布平滑性可以有效抑制噪声,提高计算的稳定性,且计算精度较高,结果可靠.For improving the stability of numerical computation and making the calibrated results reasonable,a novel robust model which takes both error minimization and roughness smoothness matrix into account has been established based on the prior information that roughness parameters within the smoothest space distribution.It uses generalized inverse theory and sensitive matrix to analyze the optimization orientation and uses Guasi-Newton method to optimize step by step.In a computing example of a river network composed of 14 channels,cases were tested about the uniqueness of solution,numerical stability and reliability.The results show that the present model can control numerical noise effectively,and the calibrated roughness is accurate and reliable with high numerical stability.
分 类 号:TV143.5[水利工程—水力学及河流动力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.110.165