检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:QI Fumin XIE Xiaoyao JING Fengxuan
机构地区:[1]Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University
出 处:《Wuhan University Journal of Natural Sciences》2013年第5期418-426,共9页武汉大学学报(自然科学英文版)
基 金:Supported by the Special Fund of Financial Support for Development of Local Universities in China(2012-140 &2012-118);The Science and Technology Foundation of Guizhou Provincial([2011] 2213);Natural Sciences Research Foundation of Guizhou Normal University for Student(201219)
摘 要:To solve the problem of the design of classifier in network threat detection, we conduct a simulation experiment for the parameters’ optimal on least squares support vector machine (LSSVM) using the classic PSO algorithm, and the experiment shows that uneven distribution of the initial particle swarm exerts a great impact on the results of LSSVM algorithm’s classification. This article proposes an improved PSO-LSSVM algorithm based on Divide-and-Conquer (DCPSO- LSSVM) to split the optimal domain where the parameters of LSSVM are in. It can achieve the purpose of distributing the initial particles uniformly. And using the idea of Divide-and-Conquer, it can split a big problem into multiple sub-problems, thus, completing problems’ modularization Meanwhile, this paper introduces variation factors to make the particles escape from the local optimum. The results of experiment prove that DCPSO-LSSVM has better effect on classification of network threat detection compared with SVM and classic PSOLSSVM.To solve the problem of the design of classifier in network threat detection, we conduct a simulation experiment for the parameters’ optimal on least squares support vector machine (LSSVM) using the classic PSO algorithm, and the experiment shows that uneven distribution of the initial particle swarm exerts a great impact on the results of LSSVM algorithm’s classification. This article proposes an improved PSO-LSSVM algorithm based on Divide-and-Conquer (DCPSO- LSSVM) to split the optimal domain where the parameters of LSSVM are in. It can achieve the purpose of distributing the initial particles uniformly. And using the idea of Divide-and-Conquer, it can split a big problem into multiple sub-problems, thus, completing problems’ modularization Meanwhile, this paper introduces variation factors to make the particles escape from the local optimum. The results of experiment prove that DCPSO-LSSVM has better effect on classification of network threat detection compared with SVM and classic PSOLSSVM.
关 键 词:DIVIDE-AND-CONQUER least squares support vector machine (LSSVM) improved PSO CLASSIFICATION network threat detection
分 类 号:TN91[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40