检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学船舶工程学院,哈尔滨150001
出 处:《水动力学研究与进展(A辑)》2013年第4期482-485,共4页Chinese Journal of Hydrodynamics
基 金:国家自然科学基金项目(11272097)~~
摘 要:边界元方法广泛应用于势流问题的求解,其分为常值面元法和高阶面元法两类。研究表明:常值面元法在计算光滑物面处的切向速度时精度较好,而在物面拐角处的切向速度精度则很差;而采用高阶面元法可以改进其精度,但高阶面元法在处理非光滑边界处主值时比较困难。为此该文提出了泰勒展开边界元方法(TEBEM方法)。该方法主要通过对边界积分方程中的偶极强度进行泰勒展开并保留至一阶导数项,同时在格林第三公式中关于场点沿边界取切向导数封闭方程组,然后联立方程组直接求解出速度势及其沿物面的切向速度。通过与传统分布源方法的数值计算比较发现,采用TEBEM方法计算非光滑边界处的切向诱导速度的精度有相当大的提高。The boundary element method is widely used in solving potential flow problems, which is divided into constant panel method and high order panel method. However, numerous literatures show that the accuracy of constant panel method (CPM) is good for the induced velocity when the points locate in the smooth boundary surface, while it's quite poor on the non-smooth part. Although using high order boundary clement method can greatly improve its accuracy, the treatment of the chief value at non smoothed surface is quite complicated. So the Taylor expansion boundary element method (TEBEM) is proposed, which mainly applies the Taylor expansion to the dipole strength of the BIE, and then keeps the first-order derivative, finally takes the two tangential derivatives with respect to the field points on the boundary to form the closed equations. Combine the equations then solve the potential and its tangential derivative. Compared to traditional CPM method, the TEBEM method can extremely improve the accuracy of the tangential derivative on the non-smooth body surface.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222