Dynamics of Commuting Rational Maps on Berkovich Projective Space over C_p  

Dynamics of Commuting Rational Maps on Berkovich Projective Space over C_p

在线阅读下载全文

作  者:Shi Lei FAN Yue Fei WANG 

机构地区:[1]Institute of Applied Mathematics,AMSS,Chinese Academy of Sciences [2]Institute of Mathematics,AMSS,Chinese Academy of Sciences

出  处:《Acta Mathematica Sinica,English Series》2013年第8期1459-1478,共20页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant Nos.10831008 and 11231009)

摘  要:We study the dynamics of commuting rational maps with coefficients in Cp. By lifting the dynamics from P1(Cp) to Berkovich projective space P1 Berk, we prove that two nonlinear commuting maps have the same Berkovich Julia set and the same canonical measure. As a consequence, two nonlinear commuting maps with coefficient in Cp have the same classical Julia set. We also prove that they have the same pre-periodic Berkovich Fatou components.We study the dynamics of commuting rational maps with coefficients in Cp. By lifting the dynamics from P1(Cp) to Berkovich projective space P1 Berk, we prove that two nonlinear commuting maps have the same Berkovich Julia set and the same canonical measure. As a consequence, two nonlinear commuting maps with coefficient in Cp have the same classical Julia set. We also prove that they have the same pre-periodic Berkovich Fatou components.

关 键 词:Non-Archimedean field Berkovich projective line Fatou set Julia set 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象