A Characterization of Multidimensional Multi-knot Piecewise Linear Spectral Sequence and Its Applications  被引量:1

A Characterization of Multidimensional Multi-knot Piecewise Linear Spectral Sequence and Its Applications

在线阅读下载全文

作  者:Xiao Na CUI Xu LIU Rui WANG Dun Yan YAN 

机构地区:[1]School of Mathematical Sciences, University of Chinese Academy of Sciences [2]School of Applied Mathematics, Jilin University of Finance and Economics [3]School of Mathematics, Jilin University

出  处:《Acta Mathematica Sinica,English Series》2013年第9期1679-1690,共12页数学学报(英文版)

基  金:supported by Science and Technology Research Project of Jilin Provincial Department of Education of China (Grant No. 2011175);supported by National Natural Science Foundation of China (Grant Nos. 11071250 and 11126149),supported by National Natural Science Foundation of China (Grant Nos. 11071250 and 11271162);Guangdong Provincial Government of China through the "Computational Science Innovative Research Team" program

摘  要:We characterize a class of piecewise linear spectral sequences. Associated with the spectral sequence, we construct an orthonormal exponential bases for L2([0,1)d), which are called generalized Fourier bases. Moreover, we investigate the convergence of Bochner-Riesz means of the generalized Fourier series.We characterize a class of piecewise linear spectral sequences. Associated with the spectral sequence, we construct an orthonormal exponential bases for L2([0,1)d), which are called generalized Fourier bases. Moreover, we investigate the convergence of Bochner-Riesz means of the generalized Fourier series.

关 键 词:Spectral sequences orthonormal exponential bases convergence analysis Bochner-Riesz means 

分 类 号:O174.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象