检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yong Hua MAO Yan Hong SONG
机构地区:[1]School of Mathematical Sciences,LMCS,Ministry of Education,Beijing Normal University
出 处:《Acta Mathematica Sinica,English Series》2013年第10期1949-1962,共14页数学学报(英文版)
基 金:Supported in part by 985 Project,973 Project(Grant No.2011CB808000);National Natural Science Foundation of China(Grant No.11131003);Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20100003110005);the Fundamental Research Funds for the Central Universities
摘 要:Abstract Let P be a transition matrix which is symmetric with respect to a measure π. The spectral gap of P in L2(π)-space, denoted by gap(P), is defined as the distance between 1 and the rest of the spectrum of P. In this paper, we study the relationship between gap(P) and the convergence rate of P^n. When P is transient, the convergence rate of pn is equal to 1 - gap(P). When P is ergodic, we give the explicit upper and lower bounds for the convergence rate of pn in terms of gap(P). These results are extended to L^∞ (π)-space.Abstract Let P be a transition matrix which is symmetric with respect to a measure π. The spectral gap of P in L2(π)-space, denoted by gap(P), is defined as the distance between 1 and the rest of the spectrum of P. In this paper, we study the relationship between gap(P) and the convergence rate of P^n. When P is transient, the convergence rate of pn is equal to 1 - gap(P). When P is ergodic, we give the explicit upper and lower bounds for the convergence rate of pn in terms of gap(P). These results are extended to L^∞ (π)-space.
关 键 词:Spectral gap convergence rate geometric ergodicity TRANSIENCE strong ergodicity uni-form decay
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.184.32