A Bombieri-type Theorem for Exponential Sums  

A Bombieri-type Theorem for Exponential Sums

在线阅读下载全文

作  者:Wei Li YAO 

机构地区:[1]Department of Mathematics,College of Sciences,Shanghai University [2]School of Mathematics,Shandong University

出  处:《Acta Mathematica Sinica,English Series》2013年第10期1997-2012,共16页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant No.11271249);the First-class Discipline of Universities in Shanghai

摘  要:Let fk(n) be the characteristic function of n with Ω(n) = k, and T k(x,α)=∑n≤xfk(n)e(nα).The main purpose of this paper is to establish a Bombieri-type mean-value theorem for Tk(x, α), via using the modified Huxley-Hooley contour and the large-sieve type zero-density estimate for Dirichlet L-functions. The result plays an important role in handling the enlarge major arcs when we try to solve the Waring-Goldbach type problem by the circle methodLet fk(n) be the characteristic function of n with Ω(n) = k, and T k(x,α)=∑n≤xfk(n)e(nα).The main purpose of this paper is to establish a Bombieri-type mean-value theorem for Tk(x, α), via using the modified Huxley-Hooley contour and the large-sieve type zero-density estimate for Dirichlet L-functions. The result plays an important role in handling the enlarge major arcs when we try to solve the Waring-Goldbach type problem by the circle method

关 键 词:Zero-density estimate Huxley-Hooley contour .Bombieri-type theorem 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象