The generalized Bouleau-Yor identity for a sub-fractional Brownian motion  被引量:9

The generalized Bouleau-Yor identity for a sub-fractional Brownian motion

在线阅读下载全文

作  者:YAN LiTan HE Kun CHEN Chao 

机构地区:[1]Department of Mathematics, College of Science, Donghua University [2]Department of Mathematics, East China University of Science and Technology

出  处:《Science China Mathematics》2013年第10期2089-2116,共28页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11171062);Innovation Program of Shanghai Municipal Education Commission(Grant No.12ZZ063)

摘  要:Let SH be a sub-fractional Brownian motion with index 0 〈 H 〈 1/2. In this paper we study the existence of the generalized quadratic eovariation [f(SH), SH](W) defined by[f(SH),SH]t(W)=lim ε↓0 1/ ε2H ∫t 0 {f(SH s+ε)-f(SH s+ε)-f(SH s)}(SH s+ε -SH s)ds2H, provided the limit exists in probability, where x → f(x) is a measurable function. We construct a Banach space X of measurable functions such that the generalized quadratic covariation exists in L2 provided f ∈ X. Moreover, the generalized Bouleau-Yor identity takes the form -∫R f(x) H(dx,t)=(2-2 2H-1)[f(SH ),SH]t(w) for all f ∈ where H (X, t) is the weighted local time of SH. This allows us to write the generalized ItS's formula for absolutely continuous functions with derivative belonging to .Let SH be a sub-fractional Brownian motion with index 0 < H < 1/2.In this paper we study the existence of the generalized quadratic covariation [f(SH),SH](W) defned by[f(SH), SH](W)t= limε→01/ε2H∫t0{f(SHs+ε)-f(SHs)}(SHs+ε-SHs)ds2H,provided the limit exists in probability, where x → f(x) is a measurable function. We construct a Banach space ■ of measurable functions such that the generalized quadratic covariation exists in L2 provided f ∈ H.Moreover, the generalized Bouleau-Yor identity takes the form ∫Rf(x)ψH(dx, t) =(2-22H-1)[f(SH), SH](W)t for all f∈■, where ψH(x, t) is the weighted local time of SH. This allows us to write the generalized It's formula for absolutely continuous functions with derivative belonging to

关 键 词:sub-fractional Brownian motion Malliavin calculus local time Ito's formula quadratic covaria-tion 

分 类 号:O211.6[理学—概率论与数理统计] O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象