检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mingguang Yu Guangxue Chen Jiangwen Liu Baoling Tang Wentao Huang
机构地区:[1]State Key Laboratory of Pulp and Papermaking Engineering,South China University of Technology
出 处:《Journal of Materials Science & Technology》2013年第9期801-805,共5页材料科学技术(英文版)
基 金:financial support from the National Natural Science Foundation of China (No. 60972134, No. 51205137);the Fundamental Research Funds for the Central Universities with grant no. 2012ZM0067
摘 要:Sphere-shape Eu(DBM)3Phen@Si02 nanoparticles were fabricated by employing a modified alkaline catalyzed hydrolysis and precipitation method. The silica coated on the particles surface was obtained by means of hydrolysis and condensation of tetraethyl orthosilicate (TEOS). In this study, the particles morphology was analyzed by scanning electron microscopy (SEM) and the surface composition of samples was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). It is confirmed that the Si02 shell has been coated on the rare earth complexes successfully. Moreover, the near-infrared photoluminescence emission analysis on the nanoparticles showed that the SiO2 shell would increase the luminescence intensity of Eu(DBM)3Phen. This is primarily due to the reason that SiO2 shell with chemical inertness can effectively reduce the ion Eu3~ non-radiation transition probabilities, as well as the probability of rare earth luminescence quenching caused by the external medium.Sphere-shape Eu(DBM)3Phen@Si02 nanoparticles were fabricated by employing a modified alkaline catalyzed hydrolysis and precipitation method. The silica coated on the particles surface was obtained by means of hydrolysis and condensation of tetraethyl orthosilicate (TEOS). In this study, the particles morphology was analyzed by scanning electron microscopy (SEM) and the surface composition of samples was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). It is confirmed that the Si02 shell has been coated on the rare earth complexes successfully. Moreover, the near-infrared photoluminescence emission analysis on the nanoparticles showed that the SiO2 shell would increase the luminescence intensity of Eu(DBM)3Phen. This is primarily due to the reason that SiO2 shell with chemical inertness can effectively reduce the ion Eu3~ non-radiation transition probabilities, as well as the probability of rare earth luminescence quenching caused by the external medium.
关 键 词:CORE-SHELL Micro-sphere Rare earth complex SI02 LUMINESCENT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33