检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:温艳清[1] 刘宝亮[1] 罗芳[1] 孟献青[1]
机构地区:[1]山西大同大学数学与计算机科学学院,山西大同037009
出 处:《山东大学学报(理学版)》2013年第9期46-50,共5页Journal of Shandong University(Natural Science)
基 金:山西省高校科技项目(20121015);山西省高等学校教学改革项目(J2012077)
摘 要:考虑了一个单部件可修系统,部件的工作时间为phase-type分布,修理时间为指数分布,建立了原马尔可夫可修系统模型。在该模型的基础上,如果系统的维修时间不超过给定的非负常数τ,则这段维修时间可以被忽略,认为系统在这段时间内仍处于工作状态,如果系统的维修时间超过了给定的非负常数τ,则这段维修时间不能被忽略,认为系统在这段时间内处于故障状态,从而建立了可忽略部分维修时间的系统模型,并运用聚合随机过程理论,分别推导出两个系统模型的几个可靠性指标。最后用一个数值算例对所得结论进行了模拟实现。A unit repairable system, with the working time follows phase-type distribution, and with the repair time is exponentially distributed, was considered. The original Markov repairable system model was modeled. Based on the model, if the system repair time is less than given non-negative constant τ, then the repair time can be omitted, we think that the system is also working during the repair time. Otherwise, if the system repair time is greater than given non-negative constantτ, then the repair time cannot be omitted, the system is thought of as failure during the repair time. Based on these assumptions, the new system model with repair time omission was modeled. Some reliability indexes of the original model and the new model were respectively derived by using aggregated stochastic process theo- ry. Finally, a numerical example was given to illustrate these results obtained.
关 键 词:马尔可夫可修系统 PH分布 可靠性 维修时间忽略
分 类 号:O213.2[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.205.60