检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜世强[1] 许艳子[1] 郑慧敏[1] 戴传文[1]
机构地区:[1]深圳市南山区疾病预防控制中心,广东深圳518054
出 处:《华南预防医学》2013年第5期6-9,共4页South China Journal of Preventive Medicine
摘 要:目的探索建立适合于流感样病例预测的自回归求和移动平均模型(ARIMA模型)。方法采集深圳市南山区2006—2011年流感样病例监测数据,绘制序列图,差分使序列平稳化,通过自相关分析和偏相关分析进行模型识别,根据AIC(赤池信息准则)和BIC(贝叶斯信息准则)确定模型参数,建立ARIMA预测模型,用Q统计量法对模型适用性进行检验,用2012年全年实际监测数据与模型预测值进行比较,评价模型预测效果。结果 2006—2011年流感样病例累计报告199 360例,月发病最大值9 765例,月发病最小值594例,平均月发病2 769例。通过对2006—2011年各月的监测数据进行分析发现,各年度流感样病例发病呈现明显的高峰和低谷,高峰在每年5—8月份,低谷在当年的11月份至次年2月份,不同年度略有波动。对序列进行一阶差分后可得到较为平稳的序列,适合进行模型拟合,经过模型拟合诊断发现ARIMA(0,1,1)×(0,0,1)12模型为最优模型,AIC值和BIC值最小,分别为1 239.19和1 245.98,Box-Ljung检验结果 Q值为19.07,P>0.05,通过2012年拟合值与实际值比较,结果差异无统计学意义(P>0.05)。结论 ARIMA模型可以较好地对流感样病例进行拟合分析预测。Objective To build appropriate prediction model of influenza like illness (ILI) using Autoregressive Integrated Moving Average (ARIMA) model. Methods We collected the data of ILl surveillance from 2006 to 2011 in Nanshan District, Shenzhen, and built ARIMA model according to Akaike' s Information Criterion (AIC) and Bayesian Information Criterion (BIC). The autocorrelation analysis and partial correlation analysis were used to identify the model. The model diagnosis was performed using Q statistic analysis. The actual ILI surveillance data in 2012 were compared with predictive value of the model to evaluate its predictive effect. Results A total of 199 360 ILl cases were reported from 2006 to 2011. The month max was 9 765 cases, the month rain was 594 cases, and the average was 2 769 cases per month. The annual incidence of ILI cases presented obvious peaks and valleys in 2006 -2011. The incidence peak was from May to August and the incidence valley was from November to February each year. Relatively smooth sequence was obtained and suitable for model fitting. ARIMA (0,1,1)× (0,0,1)12 was selected as the optimal model. AIC and BIC values were the least, 1 239. 19 and 1 245.98, respectively. The Q statistic was 19.07 (P 〉 0.05 ) by Box-Ljung testing, indicating the applicability of the model. There was no statistically significant difference between the observed value in 2012 and predicted value (P 〉 0. 05 ). Conclusion ARIMA model is suitable for prediction of ILI incidence.
关 键 词:流感样病例 自回归求和移动平均模型 流行病学
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117