检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓明[1,2] 周小平[1] 刘咏[3] 钱家忠[1]
机构地区:[1]合肥工业大学资源与环境工程学院,合肥230009 [2]安徽省矿产资源储量评审中心,合肥230001 [3]合肥工业大学生物与食品工程学院,合肥230009
出 处:《安全与环境工程》2013年第5期122-125,共4页Safety and Environmental Engineering
基 金:国家自然科学基金项目(40872166);合肥工业大学创新群体计划项目(2009HGCX0233)
摘 要:水灾是煤矿安全生产过程中的五大灾害之一,其中突涌水水源的确定是矿井水害防治的重中之重,而突涌水水化学信息是确定突涌水水源最快捷、准确的信息。本文以淮南矿区顾北煤矿为例,基于顾北煤矿水样的水化学信息,分别建立了确定该煤矿突涌水水源的3种判别模型,即贝叶斯判别模型、模糊综合判别模型和灰色关联度分析判别模型,并通过与顾北煤矿实际水样进行比较和验证,从而得出顾北煤矿的最佳突涌水水源判别模型为贝叶斯判别模型。该研究可为矿井防治水工作提供依据。Water disaster is one of the five major disasters in the safety production process of coal mine, and the discrimination of water-inrush source is a top priority for the prevention and treatment of water disaster in coal mine, while the water chemical information of water-inrush is the most effieien~ and accurate infor- mation in the discrimination of water-inrush source. For the purpose of quickly discriminating the source of water-inrush,this paper takes Gubei Coal Mine in Huainan Mining Area as an example,establishes Bayes- ian discrimination model, fuzzy discrimination model and gray discrimination model based on the water chemical information of the water samples and validates them by the water samples. The results show that the best discrimination model of water-inrush source is Bayesian discrimination model. The study provides a support for the decision-making of the water-inrush prevention.
分 类 号:X936[环境科学与工程—安全科学] X745.2
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222