检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张佳栋[1] 李娜[1] 赵慧洁[1] 李旭东[1] 徐秋[1]
机构地区:[1]北京航空航天大学精密光机电一体化技术教育部重点实验室,北京100191
出 处:《红外与激光工程》2013年第9期2414-2420,共7页Infrared and Laser Engineering
基 金:国家863计划(2008AA12121102;2009AA12Z119);国家自然科学基金(61008047;61177008);中国地质调查局项目(1212011120227);长江学者和创新团队发展计划(IRT0705)
摘 要:针对几何精校正过程中人工选取控制点误差大、未考虑高光谱数据光谱特征一致性等问题,提出了基于SIFT特征的自动几何精校正方法。首先提取图像的SIFT特征,利用高光谱数据的地理坐标定位进行局部特征匹配,然后为了进一步提取高精度、分布均匀的控制点,提出了一种分区域的随机采样一致(Random Sample Consensus,RANSAC)算法。利用航空高光谱成像仪Hymap获取的新疆东天山数据进行算法性能的分析与验证,并采用CE90/CE95以及均方根误差等指标进行定位精度的评价,提出的基于SIFT特征的自动几何精校正方法能够达到0.8像元的定位精度,并且校正前后光谱的光谱角小于0.01 rad。Duo to including the ground control points that choosed by manual geometric precision correction were not precise, and the existing methods ignorded the spectrum consistency of hyperspectral data, an automatic geometric precision correction method based on SIFT feature was proposed to solve the problems. SIFT feature was extracted from the image and the geographic coordinate of the hyperspectral data was used to accomplish local feature matching. In order to extract high-precision and uniformly distributed ground control points, a sub-regional Random Sample Consensus (RANSAC) algorithm was proposed. The airborne hyperspectral data collected by HyMap in Dongtianshang, Xinjiang Autonomous Region, was used to analyze and validate the performance of the algorithm. The CE90/CE95 and root mean square error were calculated to evaluate the geopositional accuracy. The results show that the automatic geometric correction method based on SIFT feature can achieve 0.8 pixel geopositional accuracy, and the spectrum of the spectrum angle between warp image and corrected image is less than 0.01 radian.
关 键 词:几何精校正 高光谱遥感 地面控制点 光谱一致性 定位精度
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.101.186