检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学机械与汽车工程学院,安徽合肥230009
出 处:《合肥工业大学学报(自然科学版)》2013年第9期1025-1028,共4页Journal of Hefei University of Technology:Natural Science
基 金:国家"863"节能与新能源汽车重大资助项目(2011AA11A202)
摘 要:文章针对设计的ISG型中度混合动力汽车(HEV),建立了基于动态规划算法优化控制策略的Matlab/Simulink逆向验证模型,通过仿真得到特定工况下燃油消耗最优值,用以评价之后建立的基于遗传算法优化的Advisor整车模型。比较仿真结果,可以得出基于遗传算法优化的Advisor模型具有较高的精确性,其燃油消耗量与理论最优油耗值误差在3.2%左右,总体油耗值在一个相对理想的范围。According to the design of a moderate hybrid electric vehicle(HEV) with integrated starter and generator(ISG), a reverse verification model usirig Matlab/Simulink was established, which was based on the dynamic programming algorithm to optimize the control strategy. The optimal fuel con- sumption value in specific driving cycle was given after running the simulation, which was used to e- valuate the vehicle model using Advisor based on genetic algorithm. The simulation results show that the model established by Advisor based on genetic algorithm has high accuracy~ compared to the theo- retical optimal fuel consumption value, the error is around 3.2% and overall fuel consumption value maintains in a relativelv ideal ran~
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28