检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]淮北师范大学数学科学学院,安徽淮北235000 [2]滁州学院数学系,安徽滁州239012
出 处:《运筹学学报》2013年第3期35-44,共10页Operations Research Transactions
基 金:国家自然科学基金(No.10971248);安徽省科技厅自然科学基金(No.1208085QF119);安徽省教育厅自然科学基金(Nos.KJ2013Z279;KJ2011B152;KJ2012B166;2011SQRL070)
摘 要:图G的一个pebbling移动是从一个顶点移走2个pebble,而把其中的1个pebble移到与其相邻的一个顶点上.图G的pebbling数f(G)是最小的正整数n,使得不论n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动,把1个pebble移到图G的任意一个顶点上.图G的中间图M(G)就是在G的每一条边上插入一个新点,再把G上相邻边上的新点用一条边连接起来的图.对于任意两个连通图G和H,Graham猜测f(G×H)≤f(G)f(H).首先研究了圈的中间图的pebbling数,然后讨论了一些圈的中间图满足Graham猜想.A pebbling move on a graph G consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graph G, denoted by f(G), is the least n such that any distribution of n pebbles on G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. The middle graph M(G) of a graph G is the graph obtained from G by inserting a new vertex into every edge of G and by joining by edges those pairs of these new vertices which lie on adjacent edges of G. For any connected graphs G and H, Graham conjectured that f(G × H) ≤ f(G)f(H). In this paper, we show the pebbling numbers of middle graphs of cycles, and discuss that Graham's conjecture holds for middle graphs of some cycles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.72