检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《运筹学学报》2013年第3期115-123,共9页Operations Research Transactions
基 金:上海大学第六届研究生创新基金项目
摘 要:Leung等(Preemptive multiprocessor order scheduling to minimize total weighted flowtime[J].European Journal fo Operational Research,2008,190:40-51)研究了如下问题:有n个订单,其中每个订单i含有ni个不同的工件.所有的订单在零时刻已经到达,并且工件的加工是可中断的.每个订单i有一个权重ωi,定义订单i的完工时间Ci为订单i最后一个完工工件的完工时间.目标是找到一个可行排序使得加权总完工时间∑ni=1ωiCi最小.Leung等证明了这个问题是NP-难的,给出了一个近似算法,并且分析了该算法的最坏情况界.但是定理2的证明存在一些错误.证明了尽管定理2的证明过程存在错误,但是其结论仍然正确.另外,对上述模型的一种特殊情形给出了更好的近似算法.Leung等(Preemptive multiprocessor order scheduling to minimize total weighted flowtime [J]. European Journal of Operational Research, 2008, 190: 40-51) study the following problem: there are n orders each of which requests various quantities of the different product types. All the orders are available for processing at time t = 0, and preemption is allowed. Order i has a weight wi and its completion time is the time when its last requested product type is completed. The goal is to find a preemptive schedule such that the total weighted completion time ∑^ni=1ωiGi is minimized. They show that this problem is NP-hard and propose a heuristic with worst-case ratio analysis. When reading the proof of Theorem 2 in this paper, we find that some statements are not correct. In this paper, we show that although the proof of Theorem 2 is not valid, the conclusion is still right. Furthermore, we propose an improved approximation algorithm for a special case.
分 类 号:O223[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.236