MEXICO风轮的气动性能预测  被引量:3

Prediction of aerodynamic performance for MEXICO rotor

在线阅读下载全文

作  者:洪泽东 杨华 徐浩然 沈文忠[2] 

机构地区:[1]扬州大学水利与能源动力工程学院,扬州225127 [2]丹麦技术大学风能系

出  处:《农业工程学报》2013年第18期67-74,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家自然科学基金资助项目(50706041);科技部国际科技合作计划资助项目(2010DFA64660);扬州大学科技创新培育基金资助项目(2012CXJ048);江苏省研究生科研创新计划(CXZZ12_0898)

摘  要:动量叶素法(blade element momentum,BEM)和计算流体力学方法(computational fluid dynamics,CFD)是预测风力机气动性能的常用方法,本文基于商用MATLAB和CFX软件,对MEXICO(Model Experiments In Controlled Conditions)风轮5种风速的轴向入流工况分别采用BEM和CFD方法进行气动性能预测,其中BEM方法计算时采用Shen叶尖修正,CFD方法选用SST紊流模型求解三维雷诺时均方程。研究表明,BEM和CFD方法计算的攻角最大相对误差分别为-0.402、0.099,试验获得的来流攻角沿叶片径向分布基本处于2种方法获得的结果之间,且在叶尖处更接近CFD计算的结果;试验获得的叶片轴向力沿叶片径向分布与2种方法的预测结果基本吻合,BEM和CFD 2种方法计算的轴向力最大相对误差分别为-0.139、-0.096,当叶片进入失速状态后,BEM方法计算的切向力最大相对误差达到-0.471,表明BEM方法的预测精度有待进一步提高,研究成果可为工程模型的修正与开发提供参考。The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip-flow will produce secondary flow along the blade, consecutively resulting in decreases of torque. To overcome the above-mentioned issue, a variety of tip-correction models are developed, while most models overestimate the axial and tangential forces. To optimize accuracy, a new correction model summarized from CFD results by Shen is adopted in this paper. In order to accurately simulate the separation point and the separation area which is caused by the adverse pressure gradient, the CFD method using SST turbulence model is used to solve the three-dimensional Reynolds averaged equations. The first order upwind is used for the advection schemes, and the discrete equations are solved with simple algorithms. In addition, uniform velocity and static temperature are given as inlet boundary conditions, and static pressure is given as the circumferential outer boundary condition and the outlet boundary condition. The boundaries of fan-shaped both sides are defined as rotationally periodic connection, and the freeze rotor model is applied at the interface of the rotating and stationary domains, which means the relative position of rotating and stationary domains is fixed when calculating the flow field. Speed no-slip conditions are applied to solid walls such as blades. In this paper, two different meshing methods are used to generate a hexahedral grid for the rotating domain and a tetrahedral grid for stationary domain, between which comparison of the deviation of axial force on 60% blade cross section under the design condition (Vtun=15 m/s) leads to a clear decision of the better mesh method with less deviation. Taking the better mesh method into consideration, the final number of rotating domain grids is calculated acco

关 键 词:风机 气动载荷 计算流体力学 攻角 

分 类 号:TK83[动力工程及工程热物理—流体机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象